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Abstract — The effects of uniform lateral mass flux on the free convection boundary layer on a vertical

wall in a saturated porous medium are considered. A series valid near the leading edge is derived and this

is extended by a numerical solution of the full equations. Asymptotic expansions, valid at large distances

along the plate, are derived in both the cases of withdrawal and injection of fluid. In the former case the

boundary layer has constant thickness, while in the latter case there is a region of constant temperature

next to the wall made up of fluid that has been injected through the wall, with an outer region where
thermal diffusion is important.

NOMENCLATURE
g, acceleration due to gravity;
K, permeability of the porous medium;
Q, heat-transfer coefficient ;
T, temperature;;

7,, wall temperature;
Ty,  temperature of the ambient fluid;

AT, temperature difference = |T,,— Ty|;
u, Darcy’s law velocity in the x-direction;
v, Darcy’s law velocity in the y-direction;
V,, transpiration velocity (constant);
X, vertical coordinate;
¥ horizontal coordinate.
Greek symbols
a, equivalent thermal diffusivity;
B, coefficient of thermal expansion;
U, viscosity of the convective fluid;

po,  density of the convective fluid.

1. INTRODUCTION

IN A RECENT paper, Cheng and Minkowycz [1]
discussed the free convection boundary layer on an
impermeable vertical wall embedded in a saturated
porous medium. This problem arose in modelling the
cooling of a hot intrusive trapped in an aquifer in
which the groundwater next to the intrusive is not
vaporised. Cheng [2] has also considered the effects
that the lateral injection or withdrawal of fluid
through the wall has on the free convection
boundary layer. He applied this to the problems of
the convective movement of water discharged from a
geothermal power plant into groundwater of a
different temperature and in the natural recharging
of an aquifer by groundwater of a different tempera-
ture. A full description of the underlying physical
assumptions is given in [1] and [2] and it is
unnecessary to repeat the details here.

Cheng [2] considered the case of large Rayleigh
number where the governing equations are the
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boundary-layer equations as derived by Wooding
[3]. To solve these, Cheng [2] looked for those
power law variations of wall temperature and
transpiration velocity for which a similarity solution
could be obtained. He found that this was possible
when the wall temperature and transpiration velocity
varied as x* and x*~ /2 respectively. Though giving
a good insight into the nature of the problem, this
method has the disadvantage that the boundary
conditions that are necessarily imposed on the wall
temperature and transpiration velocity are
unrealistic.

In this paper we consider the effects of the lateral
injection or withdrawal at constant velocity ¥, of
fluid at constant temperature 7T, on the free
convection bovndary layer on a vertical plane wall in
a saturated porous medium with ambient tempera-
ture T;,. The analogous problem of a free convection
boundary layer on a vertical plate with constant
blowing or suction has been treated by Merkin [4]
and methods similar to those given in [4] are used to
solve the present problem.

A series expansion in powers of x'/¢ is first
obtained which describes the flow near the leading
edge. This expansion is then extended by a numerical
solution of the boundary-layer equations, which
starts at x = 0 and proceeds along the wall until
the asymptotic conditions are attained to the
required accuracy. Asymptotic expansions (ie. for
large x) are then derived in both the cases of
withdrawal and injection of fluid. In the former case
the boundary layer is found to have constant
thickness and that this is approached through terms
which are exponentially small for large x. In the
latter case the flow is divided up into two regions.
There is a region of thickness O(x) next to the wall
made up of fluid at temperature 7,, which has been
injected through the wall, and in which thermal
diffusion can be neglected. The edge of this inner
region is determined by the streamline that emerged
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from the wall at the leading edge, and this solution
has a discontinuity in temperature at this dividing
streamline. Thermal diffusion effects are then impor-
tant in a thin region centred round the “dividing
streamline” which merges with the inner solution
and at the outer edge of which the fluid attains the
ambient conditions and so the temperature passes
smoothly from T, near the wall to the ambient
temperature Tj,.
2. EQUATIONS

If we assume that the convective fluid and the
porous medium are isotropic, in thermodynamic
equilibrium and have constant physical properties
and that the Boussinesq approximation is valid, then
with the usual boundary-layer simplifications, the
governing equations are, from Wooding [3],

_ gbKp,

u (T-T,) {1)
H
du Ov
u?—tﬁ-v&i:ai{z (3)
ix ay ay?

where K is the permeability of the porous medium, «
the equivalent thermal diffusivity and p, the density
of the ambient fluid. » and v are the velocities, as
given by Darcy’s law, in the x and y directions
respectively. The boundary conditions are

T=T,. y=0 4)
T- T,

v=+F,  on

u—0 as y-x {5}

where V,(>0) is the transpiration velocity. The
upper sign is taken throughout for the injection of
fluid and the lower sign for the withdrawal of fluid.

3. NUMERICAL SOLUTION

From (2) we can define a stream function ¥ in the
usual way and then make the equations non-
dimensional by writing

x (ﬂogﬂATK
=7
T—T,=ATH{X.Y)
V2 u ) b
X=— —m)x and ¥ =—y
a \pogfATK %
where AT = |T, —Tgl.
Equation (1) then gives 8= (F/¢Y and, using this,
equation (3) becomes

Jrox

83F  OF ¢'F oF 0°F )
oY dY aYaX  8X éy?
with boundary conditions
oF ¢F
e =F1, —=1onY=0,
éx Yy
(7
oF

-0 as Y- .

a
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Near the leading edge the flow will be driven by
the buoyancy forces and a further transformation is
required to put equation (6) in a form more
appropriate for solving from X = 0. To do this we
write

F =T —+ (& n) where n = — and & = QX))

a
EI I

(3]

Equation (6) then becomes

ﬁsfﬁ}_ 2 _ Y
o e T Sogr

of &f oy

(5;51165 a@ﬁ) ®)

4
with boundary conditions
é of

. f
f=0 —=1onn5=0, 2—40 as n—oc. (9)
on an

f (&, n) is then expanded in the form

JEm = fmFim+E3fm+....  (10)
The equation for f,(x) is the Blasius equation
fo"+Jofs =0 {11)

with ;01 =0, f50)=1 and f;—0 as 5w
(primes denote differentiation with respect to #).
Equation (11} has arisen previously in a different
context and its numerical solution is treated in some
detail by Ackroyd [5]. The equations for f, and f,
are linear and can be solved in a straightforward
manner. We can define a heat-transfer coefficient Q

by
« ((’?T) (62F>
0= VAT \ey /oo \ov?)y

then, from (10}, we have for small ¢

0 = & 10.62756 F0.447135 +0.1194282 .. ),

(12)

Equation (8) was solved numerically using essen-
tially the same method as described in [4]. In the
case of the withdrawal of fluid the numerical
integration started at ¢ = 0 and proceeded in steps of
Af =01 to =1 (e. X =0.5). The profiles thus
obtained were used as starting values for a numerical
integration of equation {(6) which is more approp-
riate for large X. This then proceeded from ¢ =1
until the asymptotic values were attained to within
the accuracy of the numerical scheme. For the case
of the injection of fluid, equation (8) was integrated
from ¢ = 0 without any change until the asymptotic
values were reached. Values of the heat-transfer
coefficient Q for the injection and withdrawal of fluid
are given in Tables 1 and 2 respectively. Also given
in Tables 1 and 2 are the values of Q as calculated
from (12) for small &, and it can be seen that there is
good agreement up to about & = [.

4. ASYMPTOTIC EXPANSION —~ WITHDRAWAL
OF FLUID
The fluid in the boundary layer is accelerated by
the buoyancy forces resulting from the applied
temperature difference, and. if there were no with-



Table 1. Heat transfer Q for the injection of fluid

Numerical Series
¢ X solution [from (12)]

02 0.02 27147 2.7146
04 0.08 1.1683 1.1695
0.6 0.18 0.6666 0.6705
0.8 0.32 0.4256 0.4329
1.0 0.50 0.2883 0.2999
1.2 0.72 0.2022 0.2191
14 0.98 0.1450 0.1683
1.6 1.28 0.1056
1.8 1.62 0.0776
20 2.00 0.0573
24 2.88 0.0316
2.8 392 0.0174
32 5.12 0.0095
3.6 6.48 0.0051
40 8.00 0.0027
44 9.68 0.0014
438 11.52 0.0007
52 13.52 0.0003
5.6 15.68 0.0002
6.0 18.00 0.0001
6.4 20.48 0.0000

Table 2. Heat transfer Q for the withdrawal of fluid

Numerical Series
13 X solution [from (12)]

0.2 0.02 3.6089 3.6089
04 0.08 2.0650 2.0638
0.6 0.18 1.5678 1.5647
0.8 0.32 1.3325 1.3271
1.0 0.50 1.2020 1.1941
0.70 1.1289 1.1188
0.90 1.0871 1.0751
1.10 1.0609 1.0474

1.30 1.0434

1.50 1.0314

1.90 1.0169

2.50 1.0069

3.30 1.0023

4.10 1.0008

4.90 1.0004

5.70 1.0002

6.50 1.0001

7.30 1.0000
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drawal of fluid through the wall, its thickness would
increase like X'/2. Withdrawing the fluid removes
the warmest fluid and so reduces the acceleration of
the fluid in the boundary layer. This has the effect of
decreasing the boundary-layer thickness so for large
X a balance is reached between the retarding effect of
withdrawing the fluid and the accelerating effect of
the buoyancy forces, and in the limit as X — oo the
boundary layer will have constant thickness. This is
confirmed by the numerical integration as described
in the previous section.

This suggests looking for a solution of (6) in the
form

F(X,Y)=X+F,(Y)+F,(X,Y) (13)

where, for large X, F, is small compared to F,.
Substituting (13) in (6) and retaining only the largest
terms gives an ordinary differential equation for
F,(Y) which has the solution
Fo(Y)=1-eY. (14)

The equation for F,(X, Y) is then, on retaining only
the lowest order terms,

&F o%F oF o%F

e (G

oY ay? 0X d4Xoy
with boundary conditions

oF, oF,
Fj=——=00nY=0 —--0as ¥—o. (16)
oY Y

):0 (15)

As in [4] we must look for a solution of (15) in the
form F{(X,Y)=e "*¢(Y) where ¢(Y) satisfies the
eigenvalue problem

" +¢"+ye V(¢ +4) =0 a7

with ¢(0)=¢'(0)=0, ¢’ >0 as Y- oo (primes
denote differentiation with respect to Y). The first
four eigenvalues are found to be y, = 14458, y,
= 7.6188, y; = 18.7226 and y, = 34.7622, with cor-
responding eigensolutions ¢,, @, ¢, and ¢,. Graphs
of ¢}, ¢4, ¢4 and ¢, [normalised so that ¢;'(0) = 1]
are given in Fig. 1. The heat-transfer coefficient Q is

FiG. 1. Eigensolutions ¢4, ¢, ¢5 and ¢.
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then, for large X, gives
Q=1+8e7" (18) PG %G G *°G 3G 9*G
where ¢ is a constant which cannot be determined 5—5 " —5_5? B 5(5—5 5555_ - EZ ?) 20)

from the asymptotic expansion. A comparison with
the numerical solution gives § = 0.26.

5. ASYMPTOTIC EXPANSION — INJECTION
OF FLUID

Non-dimensional temperature profiles § are plot-
ted in Fig. 2 for various X. From this figure we can
see that, for large X, there is a region next to the wall
in which @ = 1 and that its thickness is proportional
to X. This region is made up of fluid that has been
injected through the wall and in it the effects of
thermal diffusion are negligible. At the edge of this
inner region is a thinner region where thermal
diffusion is important and at the outer edge of which
the ambient conditions are attained.

The boundary conditions are that 8G/0{ -0 as {
- o0 and that the solution should merge with the
inner solution near the wall, given by (= —¢&/2.
However, as we are considering a solution as £ — «
this inner boundary condition can be applied as { —
— o0 provided the inner solution is approached with
exponentially small error.
G(£,{) is expanded as

G = Go()+ET GO +ET2G, () +... 21)
Go{() satisfies the equation
Gy +GoGy =0 22)

with Gg—>0 as {(— o and Gy~{ as {—» —©
(primes denote differentiation with respect to ().

F1G. 2. Non-dimensional temperature profiles 6 at various X —injection of fluid.

In the inner region we have

F=Y-X, 6=1 (19)

(19) satisfies the boundary conditions only in Y = 0.
The streamlines of this inner solution are the straight
lines Y = X—X,. X, being the point on the wall
where the particular streamline emerged. Since for X
<0 the fluid is at rest and at the ambient
temperature (19) must be confined within the region
0<Y<Xandfor Y>X we must have F =0, 8
= 0. The “dividing streamline” Y = X is the one that
emerged from the wall at X =0, Since (19) then
gives a discontinuity in temperature on Y = X there
will be a region centred round the “dividing
streamline” where thermal diffusion effects have to be
included.

A consideration of the orders of magnitude of the
terms in equation (6) shows that the outer region has
a thickness of O(X'?). This suggests putting F
= EG(E,0) where { = ¢ NY—¢£%/2) and ¢ = 2X)V2
So the “dividing streamline” Y = X becomes { =0
and the inner solution is G = {. Equation (6) then

Values of G}, are given in Table 3. To check that G,
approaches the inner boundary condition with an
exponentially small error put G, = { + Hg(() then, as
{ - — o0, equation (22) becomes Hy' + {Hy = 0 which
has the solution

r 1427 o CO CXP("Zz/z)

o = Coerfe[{/(2)' %] wET T
The equations for G, and G, can be solved in terms
of G,, namely, G, = Bo(1-G,) and G, =4B2Gj
+ B1({G5—G,). B, and By are undetermined con-
stants which arise from the asymptotic nature of the
solution in the sense described by Stewartson [6].

6. CONCLUSION
For a constant wall temperature Cheng [2] found
that he needed a transpiration velocity which
decreased like x~*? to obtain a similarity solution,
and then the boundary-layer thickness increased like
x1/2 for both the injection and withdrawal of fluid.
When we have the more realistic condition of a
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Table 3.
¢ G,
-40 1.0000
-3.5 0.9999
-30 0.9992
-25 0.9962
-20 0.9862
-1.5 0.9592
-1.0 0.9025
-0.8 0.8692
-0.6 0.8295
—-0.4 0.7839
-0.2 0.7330
0.0 0.6910
0.2 0.6357
04 0.5791
0.6 0.5227
0.8 0.4677
1.0 0.4150
1.5 0.2982
20 0.2063
25 0.1385
3.0 0.0905
3.5 0.0575
4.0 0.0353
4.5 0.0205
5.0 0.0107
5.5 0.0042
6.0 0.0000

constant transpiration velocity we find that in the
case of withdrawal of fluid the boundary layer
remains very thin and quickly settles down to one of
constant thickness. Using the same data as Cheng
[2], namely p,=9.2x10°kgm ™3, ¢=6.3 x10~"m?

1503
s7, f=28x10"%/K, g=98m?s”!, AT=75K,
K=10"""m? u=68x10"*kgm 's™! and a

transpiration velocity ¥, = 2 x 10" ®m s~ ! wefind that
the boundary layer has a constant thickness of about
2 matapproximately 25 mfrom theleading edge. When
fluid is discharged through the wall there is a region of
thickness proportional to x near the wall at the same
temperature as the discharged fluid. Cheng [2] found,
using the above data, that his similarity solution gave a
boundary-layer thickness at 500m from the leading
edge of about 30 m. In the present case, we find, at the
same point, an inner region of thickness about 50 mand
an outer region of thickness about 30m. So that the
effect on the ambient conditions of the discharge of
water through the wall is spread over a wider region.
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COUCHES LIMITES DE CONVECTION NATURELLE DANS UN MILIEU
POREUX SATURE AVEC FLUX MASSIQUE LATERAL

Résumé—On considére les effets d’un flux massique latéral uniforme sur la couche limite de convection

naturelle sur une paroi verticale dans un milieu poreux saturé. On obtient une série valable prés du bord

d’attaque et elle est étendue par une solution numérique des équations complétes. Des développements

asymptotiques, valables a de grandes distances le long de la plaque, sont établis a la fois dans le cas de

sortie et d’injection du fluide. Dans le premier cas la couche limite a une épaisseur constante tandis que

dans le dernier, il y a une région de température constante prés de la paroi 4 cause du fluide qui a été
injecté a travers la paroi, avec une région externe ou la diffusion thermique est importante.

GRENZSCHICHTEN BEI FREIER KONVEKTION IN EINEM GESATTIGTEN
POROSEN MEDIUM MIT SEITLICHEM MASSENSTROM

Zusammenfassung—Die Einfliisse eines gleichmiBigen seitlichen Massenstroms auf die Grenzschicht bei
freier Konvektion an einer vertikalen Wand in einem gesittigten pordsen Medium werden untersucht.
Ein an der Anstromkante giiltiger Reihenausdruck wird abgeleitet und der Losungsbereich durch eine
numerische Losung des vollstindigen Gleichungssystems ausgedehnt. Asymptotische Reihenentwick-
lungen, giiltig bei groBen Entfernungen entlang der Platte, werden fiir den Fall der Absaugung und der
Einspritzung des Fluids abgeleitet. Im ersten Fall hat die Grenzschicht konstante Dicke, wihrend im
letzteren Fall ein Gebiet konstanter Temperatur entsprechend dem durch die Wand eingespritzten Fluid
vorhanden ist, an das sich eine duBere Region anschlieBt, in der Wirmeleitung vorherrscht.
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CBOBOAHOKOHBEKTHUBHbIE NMOMPAHHUYHLIE CNIOM B HACBIWEHHOM
NMOPHUCTOA CPEAE MNPU HAJIMYUHU NONEPEYHOIO NOTOKA MACCHI

Amnoraums — PaccMaTpHBaeTCA BAHAHHE NOCTOAHHOTO NONEPEYHOro NOTOKa Macchl Ha CBODOHO-
KOHBEKTHBHbI# NOrpanH4lblii cnoit y BEpPTHKaNbHON CTEHKM B HacbllileHHO# nopucroit cpeae. Jaa
OKPECTHOCTH NneEpenHell KPOMKH BbIBEAEH DAL, HKCMONbIYEMBIA NPH YHCACHHOM PEMICHHH NOJIHBIX
ypastueHuil. ACHMNTOTHYECKHE PATIONEHUS, CNPABEI/IHBbIE 418 GONABLIKX PACCTORHHH BJIO/b [IACTHHB,
HonyyeHbl Ans OOOMX ciyyaeB — OTcoca M BAyBa XHIKOCTH. B nepsoM cnyyae HMmeeT wmecto
NOrparHuHbli coft NOCTOAHHO!N TONIUMHH, BO BTOPOM HENMOCPEACTBEHHO Y CTCHKH HHMEKTHpyEMas
KHAKOCTE HMEET MOCTOSHHYIO TEeMNEpaTypy, a BO BHEIUHeHh 00JACTH CNOA CYWIECTBEHHON ABasETCA
TENJAONPOBOAHOCTD.



