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Abstract-The effects of uniform lateral mass flux on the free convection boundary layer on a vertical 
wall in a saturated porous medium are considered. A series valid near the leading edge is derived and this 
is extended by a numerical solution of the full equations. Asymptotic expansions, valid at large distances 
along the plate, are derived in both the cases of withdrawal and injection of fluid. In the former case the 
boundary layer has constant thickness, while in the latter case there is a region of constant temperature 
next to the wall made up of fluid that has been injected through the wall, with an outer region where 

thermal diffusion is important. 

NOMENCLATURE 

$7, acceleration due to gravity; 

K permeability of the porous medium; 

Q, heat-transfer coefficient ; 
T, temperature; 
T IV, wall temperature; 
T 

A”;; 
temperature of the ambient fluid; 
temperature difference = IT, - T,J ; 

4 Darcy’s law velocity in the x-direction ; 

V, Darcy’s law velocity in the y-direction; 
V W) transpiration velocity (constant); 

x, vertical coordinate; 

Y9 horizontal coordinate. 

Greek symbols 

a, equivalent thermal diffusivity ; 

8% coefficient of thermal expansion ; 

I4 viscosity of the convective fluid ; 

PO? density of the convective fluid. 

1. INTRODUCTION 

IN A RECENT paper, Cheng and Minkowycz [l] 
discussed the free convection boundary layer on an 
impermeable vertical wall embedded in a saturated 
porous medium. This problem arose in modelling the 
cooling of a hot intrusive trapped in an aquifer in 
which the groundwater next to the intrusive is not 
vaporised. Cheng [2] has also considered the effects 
that the lateral injection or withdrawal of fluid 
through the wall has on the free convection 
boundary layer. He applied this to the problems of 
the convective movement of water discharged from a 
geothermal power plant into groundwater of a 
different temperature and in the natural recharging 
of an aquifer by groundwater of a different tempera- 
ture. A full description of the underlying physical 
assumptions is given in [1] and [2] and it is 
unnecessary to repeat the details here. 

Cheng [2] considered the case of large Rayleigh 
number where the governing equations are the 

boundary-layer equations as derived by Wooding 
[3]. To solve these, Cheng [2] looked for those 
power law variations of wall temperature and 
transpiration velocity for which a similarity solution 
could be obtained. He found that this was possible 
when the wall temperature and transpiration velocity 
varied as x1 and x@-~)~ respectively. Though giving 
a good insight into the nature of the problem, this 
method has the disadvantage that the boundary 
conditions that are necessarily imposed on the wall 
temperature and transpiration velocity are 
unrealistic. 

In this paper we consider the effects of the lateral 
injection or withdrawal at constant velocity VW of 
fluid at constant temperature T, on the free 
convection boundary layer on a vertical plane wall in 
a saturated porous medium with ambient tempera- 
ture To. The analogous problem of a free convection 
boundary layer on a vertical plate with constant 
blowing or suction has been treated by Merkin [4] 
and methods similar to those given in [4] are used to 
solve the present problem. 

A series expansion in powers of xii2 is first 
obtained which describes the flow near the leading 
edge. This expansion is then extended by a numerical 
solution of the boundary-layer equations, which 
starts at x = 0 and proceeds along the wall until 
the asymptotic conditions are attained to the 
required accuracy. Asymptotic expansions (i.e. for 
large x) are then derived in both the cases of 
withdrawal and injection of fluid. In the former case 
the boundary layer is found to have constant 
thickness and that this is approached through terms 
which are exponentially small for large x. In the 
latter case the flow is divided up into two regions. 
There is a region of thickness O(x) next to the wall 
made up of fluid at temperature T, which has been 
injected through the wall, and in which thermal 
diffusion can be neglected. The edge of this inner 
region is determined by the streamline that emerged 
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from the wall at the leading edge, and this solution 
has a discontinuity in temperature at this dividing 
streamhne. Thermal diffusion effects are then impor- 
tant in a thin region centred round the “dividing 
streamline” which merges with the inner solution 
and at the outer edge of which the fluid attains the 
ambient conditions and so the temperature passes 
smoothly from T, near the wall to the ambient 
temperature r,. 

2. EQUATIONS 

If we assume that the convective fluid and the 
porous medium are isotropic, in thermodynamic 
equilibrium and have constant physical properties 
and that the Boussinesq approximation is valid, then 
with the usual boundary-layer simplifications, the 
governing equations are, from Wooding [3], 

SPKPo 
16 = ____ (T- T,) 

P 

(21 

i?T (7T G2T 
uj;+“~=a~;~ (3) 

where K is the permeability of the porous medium, CI 
the equivalent thermal diffusivity and p0 the density 
of the ambient fluid. u and G are the velocities, as 
given by Darcy’s law, in the .y and _r directions 
respectively. The boundary conditions are 

T = T,, u = &- r/,,, on .v = 0 (4) 

T-r To, n--*0 as v--z (5) 

where I/,(>O) is the transpiration velocity. The 
upper sign is taken throughout for the injection of 
fluid and the lower sign for the withdrawal of fluid. 

3. NUMERICAL SOLUTION 

From (2) we can define a stream Function il/ in the 
usual way and then make the equations non- 
dimensional by writing 

T- To = AT&X. Y 1 

where AT = /T.-T,/. 

Equation (1) then gives H= ?F:iY and, using this, 
equation (3) becomes 

S3F C7F ?‘F ?F i;‘F 
- -- -_. 

?Y3 ?Y f?Yi;X 6?x r?Y' 
(6) 

with boundary conditions 

i)F c?F 
-= il. 
c?X 

--=I on Y=O, 
?Y 

(3F 
(7) 

- -to as Y-tw. 
c:Y 

Near the leading edge the flow will be driven by 
the buoyancy forces and a further transformation is 
required to put equation (6) in a form more 
appropriate for solving from X = 0. To do this we 
write 

-2 

F = T -;- + Q’((, y) where rI = y and 
; 

; = (2X)“Z. 

Equation (6) then becomes 

with boundary conditions 

f‘=O, g_ I on q=O, c-+0 as v-+~. (9) 
srl 

f‘([,?r) is then expanded in the form 

.f‘(Ltl) = fo(a)rrfi(tl)+5%(?)+... . (101 

The equation for Jo (?I 1 is the Blasius equation 

rd”+.t;rb” = 0 (II) 

with fa(O)=O. r;(O)=1 and f’-0 as ~~-+cu 
(primes denote differentiation wiih respect to v). 
Equation (11) has arisen previously m a different 
context and its numerical solution is treated in some 
detail by Ackroyd ES]. The equations for f, and .f2 
are linear and can be solved in a straightforward 
manner. We can define a heat-transfer coefficient Q 

by 

then, from (IO), we have for small 5 

Q = ~-1(0.42756~0.44713~+0.11942~*~...). 

(12) 

Equation (8) was solved numerically using essen- 
tially the same method as described in [4]. In the 
case of the withdrawal of fluid the numerical 
integration started at < = 0 and proceeded in steps of 
A< = 0.1 to 2 = 1 (i.e. X = 0.5). The profiles thus 
obtained were used as starting values for a numerical 
integration of equation (6) which is more approp- 
riate for large X. This then proceeded from < = 1 
until the asymptotic values were attained to within 
the accuracy of the numerical scheme. For the case 
of the injection of fluid. equation (81 was integrated 
from < = 0 without any change until the asymptotic 
values were reached. Values of the heat-transfer 
coefficient Q for the injection and withdrawal of fluid 
are given in Tables 1 and 2 respectively. Also given 
in Tables 1 and 2 are the values of Q as calculated 
from (12) for small f. and it can be seen that there is 
good agreement up to about < = I. 

4. ASYMPTOTIC EXPANSION -WITHDRAWAL 
OF FLUID 

The fluid in the boundary layer is accelerated by 
the buoyancy forces resulting from the applied 
temperature difference. and. if there were no with- 
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Table 1. Heat transfer Q for the injection of fluid drawal of fluid through the wall, its thickness would 

Numerical Series 
increase like X1”. Withdrawing the fluid removes 

5 X solution [from (12)] 
the warmest fluid and so reduces the acceleration of 
the fluid in the boundary layer. This has the effect of 

0.2 0.02 2.7147 2.7146 
0.4 0.08 1.1683 1.1695 
0.6 0.18 0.6666 0.6705 
0.8 0.32 0.4256 0.4329 
1.0 0.50 0.2883 0.2999 
1.2 0.12 0.2022 0.2191 
1.4 0.98 0.1450 0.1683 
1.6 1.28 0.1056 
1.8 1.62 0.0776 
2.0 2.00 0.0573 
2.4 2.88 0.0316 
2.8 3.92 0.0174 
3.2 5.12 0.0095 
3.6 6.48 0.0051 
4.0 8.00 0.0027 
4.4 9.68 0.0014 
4.8 11.52 o.OOQ7 
5.2 13.52 0.0003 
5.6 15.68 0.0002 
6.0 18.00 0.0001 
6.4 20.48 O.MNXl 

- 

decreasing the boundary-layer thickness so for large 
X a balance is reached between the retarding effect of 
withdrawing the fluid and the accelerating effect of 
the buoyancy forces, and in the limit as X + co the 
boundary layer will have constant thickness. This is 
confirmed by the numerical integration as described 
in the previous section. 

This suggests looking for a solution of (6) in the 
form 

F(X, Y) = X+F,(Y)+F,(X, Y) (13) 

where, for large X, F, is small compared to F,. 
Substituting (13) in (6) and retaining only the largest 
terms gives an ordinary differential equation for 
F,(Y) which has the solution 

F,,(Y) = 1 -em’. (14) 

The equation for F,(X, Y) is then, on retaining only 
the lowest order terms, 

Table 2. Heat transfer Q for the withdrawal of fluid 

Numerical 
solution [from (12)] 

Series 

3.6089 3.6089 2.0650 2.0638 
1.5678 1.5647 
1.3325 1.3271 

a3F, a2F, 
-+jyi-e aY3 

5 X 

0.2 0.02 0.4 0.08 
0.6 0.18 
0.8 0.32 

with boundary conditions 

As in [4] we must look for a solution of (15) in the 
form F,(X, Y) = e-7xgS(Y) where b(Y) satisfies the 

on Y=O, 

eigenvalue 

as 

problem 

y-+00. (16) F,=z=O $+O 

1.0 0.50 1.2020 1.1941 
0.70 1.1289 1.1188 
0.90 1.0871 1.0751 
1.10 1.0609 1.0474 

1.30 1.0434 
1.50 1.0314 
1.90 1.0169 
2.50 1.0069 
3.30 1.0023 
4.10 1.0008 
4.90 1.0004 
5.70 1.0002 
6.50 l.oool 
7.30 1.OOc0 

qY+@+ye-‘(f#i+qi) = 0 (17) 

with 4(O) = d’(O) = 0, &‘+O as Y-, co (primes 
denote differentiation with respect to Y). The first 
four eigenvalues are found to be y1 = 1.4458, y2 
= 7.6188, y3 = 18.7226 and y4 = 34.7622, with cor- 
responding eigensolutions 41, c$~, #3 and b*. Graphs 
of 4;, #2, & and & [normalised so that &‘(O) = l] 
are given in Fig. 1. The heat-transfer coefficient Q is 

-06L 

FIG. 1. Eigensolutions qY,, &‘, #3 and &. 
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then, for large X, 

Q =i 1 f&e-‘: W 

where 6 is a constant which cannot be determined 
from the asymptotic expansion. A comparison with 
the numerical solution gives 6 = 0.26. 

5. ASYMPTOTIC EXPANSION -INJECTION 
OF FLUID 

Non-dimensional temperature profiles 6 are plot- 
ted in Fig. 2 for various X. From this figure we can 
see that, for large X, there is a region next to the wall 
in which 0 = 1 and that its thickness is proportional 
to X. This region is made up of fluid that has been 
injected through the wall and in it the effects of 
thermal diffusion are negligible. At the edge of this 
inner region is a thinner region where thermal 
diffusion is important and at the outer edge of which 
the ambient conditions are attained. 

gives 

The boundary conditions are that aGja[ + 0 as I 
-+ cc and that the solution should merge with the 
inner solution near the wall, given by 5 = --t/2. 
However, as we are considering a solution as < + co 
this inner boundary condition can be applied as [ -) 
- co provided the inner solution is approached with 
exponentially small error. 

G(c, [) is expanded as 

G(5,1) = G,(S)+~-‘G,(rffe-2G,(i)+... (21) 

G,(c) satisfies the equation 

G;;‘+G,G;; =0 (22) 

with G&-O as [-+cc and Go%{ as [- --d) 
(primes denote differentiation with respect to [). 

FIG. 2. Non-dimensional temperature profiles 0 at various X-injection of fluid. 

In the inner region we have 

F=Y-X, 0=1. (191 

(19) satisfies the boundary conditions only in Y = 0. 
The streamlines of this inner solution are the straight 
lines Y = X-X,. X,, being the point on the wall 
where the particular streamline emerged. Since for X 
< 0 the fluid is at rest and at the ambient 
temperature (19) must be confined within the region 
0 < Y < X and for Y > X we must have F = 0, 0 
= 0. The “dividing streamline” Y = X is the one that 
emerged from the wall at X = 0. Since (19) then 
gives a ~scontin~ty in temperature on Y = X there 
will be a region centred round the “dividing 
streamline” where thermal diffusion effects have to be 
included. 

A consideration of the orders of magnitude of the 
terms in equation (6) shows that the outer region has 
a thickness of 0(Xif2). This suggests putting F 
= {G(<,[) where < = t:-‘(Y-t2/2) and 4! = (2Xf1j2. 
So the “dividing streamline” Y = X becomes < = 0 
and the inner solution is G = c. Equation (6) then 

Values of G6 are given in Table 3. To check that G, 
approaches the inner boundary condition with an 
exponentially small error put G, = [+H,(L) then, as 
[ --$ - co, equation (22) becomes H’d’ f [Wi = 0 which 
has the solution 

Hb = Co erfc[[/(2)1’2] - $ exp(;i2’2) . 

The equations for G, and G, can be solved in terms 
of G,, namely, G, = B,(l- Go) and G, = &BiC’d 
+ B,([G’,--G,). B, and B, are undetermined con- 
stants which arise from the asymptotic nature of the 
solution in the sense described by Stewartson [6]. 

6. CONCLUSION 

For a constant wall temperature Cheng [2] found 
that he needed a transpiration velocity which 
decreased like x- ‘j2 to obtain a similarity solution, 
and then the ~undary-layer thickness increased like 
x1f2 for both the injection and withdrawal of fluid. 
When we have the more realistic condition of a 
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Table 3. 

i G6 

-4.0 1.0000 
-3.5 0.9999 
- 3.0 0.9992 
-2.5 0.9962 
-2.0 0.9862 
- 1.5 0.9592 
-1.0 0.9025 
-0.8 0.8692 
-0.6 0.8295 
-0.4 0.7839 
-0.2 0.7330 

0.0 0.6910 
0.2 0.6357 
0.4 0.5791 
0.6 0.5227 
0.8 0.4677 
1.0 0.4150 
1.5 0.2982 
2.0 0.2063 
2.5 0.1385 
3.0 0.0905 
3.5 0.0575 
4.0 0.0353 
4.5 0.0205 
5.0 0.0107 
5.5 0.0042 
6.0 0.0000 

constant transpiration velocity we find that in the 
case of withdrawal of fluid the boundary layer 
remains very thin and quickly settles down to one of 
constant thickness. Using the same data as Cheng 
[2], namely p,=9.2~10~kgrn-~, cr=6.3xlO-‘m2 

S -l, /3 = 2.8 x 10e4/K, g = 9.8mZ s-l, AT = 75”K, 
K = 10-10m2, 1=6.8x 10-4kgm-1s-’ and a 
transpirationvelocity VW = 2 x 10m6 m s-l wefind that 
the boundary layer has a constant thickness of about 
2 m at approximately 25 m from the leading edge. When 
fluid is discharged through the wall there is a region of 
thickness proportional to x near the wall at the same 
temperature as the discharged fluid. Cheng [2] found, 
using the above data, that his similarity solution gave a 
boundary-layer thickness at 5OOm from the leading 
edge of about 30m. In the present case, we find, at the 
same point, an inner region ofthickness about 50 m and 
an outer region of thickness about 30m. So that the 
effect on the ambient conditions of the discharge of 
water through the wall is spread over a wider region. 
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COUCHES LIMITES DE CONVECTION NATURELLE DANS UN MILIEU 
POREUX SATURE AVEC FLUX MASSIQUE LATERAL 

R&urn&-On considere les effets d’un flux massique la&al uniforme sur la couche limite de convection 
naturelle sur une paroi verticale dans un milieu poreux saturi. On obtient une sQie valable p&s du bord 
d’attaque et elle est ktendue par une solution num&ique des huations complies. Des dtveloppements 
asymptotiques, valables g de grandes distances le long de la plaque, sont ktablis g la fois dans le cas de 
sortie et d’injection du fluide. Dans le premier cas la couche limite a une ipaisseur constante tandis que 
dans le dernier, il y a une rtgion de tempkrature constante p&s de la paroi g cause du fluide qui a CtC 

inject6 B travers la paroi, avec une rtgion exteme od la diffusion thermique est importante. 

GRENZSCEICHTEN BE1 FREIER KONVEKTION IN EINEM GESATTIGTEN 
POR&EN MEDIUM MIT SEITLICHEM MASSENSTROM 

Zusammenfassung-Die Einfliisse eines gleichmaigen seitlichen Massenstroms auf die Grenzschicht bei 
freier Konvektion an einer vertikalen Wand in einem gesiittigten poriisen Medium werden untersucht. 
Ein an der Anstriimkante giiltiger Reihenausdruck wird abgeleitet und der LGsungsbereich durch eine 
numerische Lijsung des vollsttindigen Gleichungssystems ausgedehnt. Asymptotische Reihenentwick- 
lungen, giiltig bei grol3en Entfernungen entlang der Platte, werden ftir den Fall der Absaugung und der 
Einspritzung des Fluids abgeleitet. Im ersten Fall hat die Grenzschicht konstante Dicke, wahrend im 
letzteren Fall ein Gebiet konstanter Temperatur entsprechend dem durch die Wand eingespritzten Fluid 

vorhanden ist, an das sich eine lul3ere Region anschlieBt, in der Wirmeleitung vorherrscht. 
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CBOBO~HOKOHBEKTHBHbIE IlOl-PAHM’dHblE CJIOM B HACblUEHHOfi 
flOPHCTOfi CPEAE IIPH HAJIMWM IlOllEPE~HOl-0 IlOTOKA MACCbl 

Amenum- PaccMaTpmaetcn Bnmuie nocTonH~or0 noneperHoi-0 noToKa hiaccbl Ha ceo6onso- 

KOHIKKTHBHY~ flOl-piWl'lHbiii CJlOil y BepTHKaJlbHOk CTWKH B HaCblIUeHHOii IlOpHCTOti CPene. fin 

OrpeClHocm nepemell K~~MKH sbmeneH pm. Hcnonb3yeMbik npH YmzneHtforbf pewewm nonHhlx 

y~BHCHH~.ACHMflTOTH~~KHe~~O~eH~K,C~~~~HBbie~~6OnbwHX~CCTOKHHHBAOnbnnacTHH~, 

nonyvciibi nnn o60Hx cnyqaee-0Tcoca H naysa YHJ~K~~TH. B nepeoh4 cnysae HM~~T biec~o 

IlO~HH'lHblk CJIOfi nOCTOflHHOfi TOJIIUIIHY. 80 BTOpOM HenOCpe%lCTBeHHO y CTeHKH HlMeKTHpyeMaK 

YiiinK0CTb miem nocroaHHym TehmepaTypy. a no BHewHeil 06nacTH cnon cyii4e~~t~~Hoii nnnneTcn 

TenJlOnpOBOAHOCTb. 


